Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Small Methods ; : e2400304, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577823

RESUMO

Intracerebral hemorrhage (ICH) represents one of the most severe subtypes of stroke. Due to the complexity of the brain injury mechanisms following ICH, there are currently no effective treatments to significantly improve patient functional outcomes. Curcumin, as a potential therapeutic agent for ICH, is limited by its poor water solubility and oral bioavailability. In this study, mPEG-PCL is used to encapsulate curcumin, forming curcumin nanoparticles, and utilized the intranasal administration route to directly deliver curcumin nanoparticles from the nasal cavity to the brain. By inhibiting pro-inflammatory neuroinflammation of microglia following ICH in mice, reprogramming pro-inflammatory microglia toward an anti-inflammatory function, and consequently reducing neuronal inflammatory death and hematoma volume, this approach improved blood-brain barrier damage in ICH mice and promoted the recovery of neurological function post-stroke. This study offers a promising therapeutic strategy for ICH to mediate neuroinflammatory microenvironments.

2.
MedComm (2020) ; 5(4): e524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585232

RESUMO

Enteric IL-17RA deficiency leads to gut dysbiosis, consequently initiating the proliferation of tumors at remote locations. The deficiency or blockade of enteric IL-17RA induces the secretion of IL-17A by B cells and Th17 cells in response to microbial signals, resulting in a systemic elevation of IL-17A and fostering the growth of remote tumors. This figure was created with BioRender.com.

3.
Small ; : e2400630, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431937

RESUMO

Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.

4.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500105

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Cão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças dos Roedores , Ratos , Animais , Cães , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/veterinária , Microglia , Macrófagos , Inflamação/veterinária , Transplante de Células-Tronco Mesenquimais/veterinária , Transplante de Células-Tronco Mesenquimais/métodos
5.
Chem Biodivers ; 21(4): e202400256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361228

RESUMO

The plant species, Sonchus wightianus DC., was historically used in China for both medicinal and dietary uses. In present study, seven new guaiane sesquiterpenoids (1-7) and one cytochalasin (8), along with five known guaianes (9-13) and two known cytochalasins (14 and 15), were isolated from the whole plants of S. wightianus. These guaianes showed structural variations in the substituents at C-8 and/or C-15, and compounds 6 and 7 are two sesquiterpenoid glycoside derivatives. Their structures were determined by extensive analysis of spectroscopic, electronic circular dichroism, and X-ray diffraction data, and chemical method. Biological tests revealed that compounds 5 and 8 are potent and selective immunosuppressive reagents.


Assuntos
Sesquiterpenos , Sonchus , Citocalasinas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Difração de Raios X , China , Estrutura Molecular
6.
PLoS One ; 19(2): e0298324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363761

RESUMO

BACKGROUND: Few studies on molecular epidemiology have studied people with newly diagnosed HIV infection and ART Failure Patients at the same time in rural China. With more serious HIV epidemic than in other provinces in China, Sichuan is an area suitable for this study. OBJECTIVE: To analyze the characteristics of HIV-1 molecular networks and factors related to network entry among newly diagnosed HIV infection and ART Failure Patients in three county-level cities (A, B, C) in Sichuan Province, to provide scientific basis for accurate prevention and control. METHODS: Nested PCR amplification method was used to amplify HIV-1 pol gene region of 530 blood samples, Sequencer 4.9 was used to edit, clean and splice the gene sequence, Bioedit correction, Fastree 2.1.8 and Figtree 1.4.2 to construct evolutionary tree and determine genotype. HyPhy2.2.4 and Cytoscape 3.6.1 software were used to construct molecular network. Logistic regression analysis was applied. RESULTS: 523(98.68%) pol sequences were obtained, and a total of 518 valid sequences with basic information came into the final analyses. A total of 6 genotypes were detected, namely CRF01_AE (320,61.78%), CRF07_BC (149,28.76%), B (30,5.79%), CRF08_BC (11, 2.12%), CRF55_01B (6, 1.16%) and C (2, 0.39%). 186 of 518(35.91%) sequences entered the network at a genetic distance of 0.8%, forming 42 propagation clusters. "High-risk transmitters"(connected with two and more) accounted for 21.62%. Logistic regression showed that≥50 years old (OR = 2.474) were more risky than 18-49 years old, CRF07_BC sub-type (OR = 0.174) were less risky than CRF01_AE sub-type, B sub-type (OR = 6.698) is higher risky than CRF01_AE sub-type, and District B (OR = 0.077) less risky than that of A city. CONCLUSION: The sources of HIV infection in rural Sichuan are diversified and complicated. The prevention and control of HIV infection in Sichuan Province should focus on strengthening the long-term dynamic detection of elderly population, B strain sub-type, and in City A.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Idoso , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Adulto , Infecções por HIV/epidemiologia , Infecções por HIV/diagnóstico , Filogenia , HIV-1/genética , Reação em Cadeia da Polimerase , Genótipo , China/epidemiologia
7.
Acta Pharm Sin B ; 14(2): 854-868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322330

RESUMO

Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.

8.
Cell Death Dis ; 15(2): 112, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321024

RESUMO

Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Docetaxel/uso terapêutico , Neoplasias Nasofaríngeas/patologia , Fatores de Transcrição/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/uso terapêutico , Quimiorradioterapia/métodos , Cisplatino/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ubiquitina Tiolesterase
9.
Org Lett ; 26(7): 1358-1363, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38345019

RESUMO

A metal-free three-component protocol that combines a hydroxylamine-Passerini reaction and hetero-Cope rearrangement was realized, which enables the modular assembly of a wide range of structurally new and interesting 2-aminoanilines bearing an α-hydroxyamide substructure.

10.
J Exp Clin Cancer Res ; 43(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191501

RESUMO

BACKGROUND: Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS: Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS: The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS: Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.


Assuntos
Neoplasias Nasofaríngeas , Ubiquitina-Proteína Ligases , Humanos , Carcinoma Nasofaríngeo/genética , Ubiquitina-Proteína Ligases/genética , Vimentina/genética , Transição Epitelial-Mesenquimal , Neoplasias Nasofaríngeas/genética
11.
ACS Nano ; 18(4): 3295-3312, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252684

RESUMO

Immunotherapy has achieved prominent clinical efficacy in combating cancer and has recently become a mainstream treatment strategy. However, achieving broad efficacy with a single modality is challenging, and the heterogeneity of the tumor microenvironment (TME) restricts the accuracy and effectiveness of immunotherapy strategies for tumors. Herein, a TME-responsive targeted nanoparticle to enhance antitumor immunity and reverse immune escape by codelivering interleukin-12 (IL-12) expressing gene and colony-stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (PLX) is presented. The introduction of disulfide bonds and cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) peptides conferred reduction reactivity and tumor targeting to the nanoparticles, respectively. It is hypothesized that activating host immunity by the local expression of IL-12, while modulating the tumor-associated macrophages (TAM) function through blocking CSF-1/CSF-1R signaling, could constitute a feasible approach for cancer immunotherapy. The fabricated functional nanoparticle successfully ameliorated the TME by stimulating the proliferation and activation of T lymphocytes, promoting the repolarization of TAMs, reducing myeloid-derived suppressor cells (MDSCs), and promoting the maturation of dendritic cells (DC) as well as the secretion of antitumor cytokines, which efficiently suppressed tumor growth and metastasis. Finally, substantial changes in the TME were deciphered by single-cell analysis including infiltration of different cells, transcriptional states, secretory signaling and cell-cell communications. These findings provide a promising combinatorial immunotherapy strategy through immunomodulatory nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Humanos , Microambiente Tumoral , Imunoterapia , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Interleucina-12/metabolismo , Nanopartículas/química , Linhagem Celular Tumoral
12.
Small Methods ; 8(1): e2301127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849248

RESUMO

Despite the tremendous progress in cancer treatment in recent decades, cancers often become resistant due to multiple mechanisms, such as intrinsic or acquired multidrug resistance, which leads to unsatisfactory treatment effects or accompanying metastasis and recurrence, ultimately to treatment failure. With a deeper understanding of the molecular mechanisms of tumors, researchers have realized that treatment designs targeting tumor resistance mechanisms would be a promising strategy to break the therapeutic deadlock. Nanodelivery systems have excellent physicochemical properties, including highly efficient tissue-specific delivery, substantial specific surface area, and controllable surface chemistry, which endow nanodelivery systems with capabilities such as precise targeting, deep penetration, responsive drug release, multidrug codelivery, and multimodal synergy, which are currently widely used in biomedical researches and bring a new dawn for overcoming cancer resistance. Based on the mechanisms of tumor therapeutic resistance, this review summarizes the research progress of nanodelivery systems for overcoming tumor resistance to improve therapeutic efficacy in recent years and offers prospects and challenges of the application of nanodelivery systems for overcoming cancer resistance.


Assuntos
Nanomedicina , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias/tratamento farmacológico , Falha de Tratamento
13.
Fitoterapia ; 172: 105759, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013059

RESUMO

A pair of new enantiomeric indolopyridoquinazoline-type alkaloids, (+)-1,7S,8R- and (-)-1,7R,8S-trihydroxyrutaecarpine (3a and 3b), and a new limonoid-tyrosamine hybrid, austrosinin (8), along with six known alkaloids and limonoids, were isolated from the stems with leaves of Tetradium austrosinense. Their structures were elucidated on the basis of analysis of MS, NMR, ECD and time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations, as well as proposed biosynthetic pathway. An anti-inflammatory bioassay in vitro showed 8 had significant immunosuppressive effect against the production of pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Assuntos
Alcaloides , Limoninas , Rutaceae , Limoninas/farmacologia , Limoninas/química , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Rutaceae/química , Dicroísmo Circular
14.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605050

RESUMO

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Assuntos
Neovascularização da Córnea , Síndromes do Olho Seco , Ratos , Humanos , Camundongos , Animais , Feminino , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Roedores/metabolismo , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/induzido quimicamente , Fator de Transcrição STAT3/metabolismo
15.
Biomed Pharmacother ; 170: 115975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070246

RESUMO

Osteoarthritis (OA) is characterized by gradual articular cartilage degradation, accompanied by persistent low-grade joint inflammation, correlating with radiographic and pain-related progression. The latent therapeutic potential of DZ2002, a reversible inhibitor of S-adenosyl-L-homocysteine hydrolase (SAHH), holds promise for OA intervention. This study endeavored to examine the therapeutic efficacy of DZ2002 within the milieu of OA. The cytotoxicity of DZ2002 was evaluated using the MTT assay on bone marrow-derived macrophages. The inhibitory impact of DZ2002 during the process of osteoclastogenesis was assessed using TRAP staining, analysis of bone resorption pits, and F-actin ring formation. Mechanistic insights were derived from qPCR and Western blot analyses. Through the intra-articular injection of monosodium iodoacetate (MIA), an experimental rat model of OA was successfully instituted. This was subsequently accompanied by a series of assessments including Von Frey filament testing, analysis of weight-bearing behaviors, and micro-CT imaging, all aimed at assessing the effectiveness of DZ2002. The findings emphasized the effectiveness of DZ2002 in mitigating osteoclastogenesis induced by M-CSF/RANKL, evident through a reduction in TRAP-positive OCs and bone resorption. Moreover, DZ2002 modulated bone resorption-associated gene and protein expression (CTSK, CTR, Integrin ß3) via the MEK/ERK pathway. Encouragingly, DZ2002 also alleviates MIA-induced pain, cartilage degradation, and bone loss. In conclusion, DZ2002 emerges as a potential therapeutic contender for OA, as evidenced by its capacity to hinder in vitro M-CSF/RANKL-induced osteoclastogenesis and mitigate in vivo osteoarthritis progression. This newfound perspective provides substantial support for considering DZ2002 as a compelling agent for osteoarthritis intervention.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite , Ratos , Animais , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Cartilagem Articular/metabolismo , Reabsorção Óssea/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças
16.
Front Public Health ; 11: 1285288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054075

RESUMO

The onset of the COVID-19 outbreak led to widespread adoption of mobility intervention policies, which were widely regarded as effective measures to control the spread of the virus. The initial pandemic wave, accompanied by the enforcement of mobility intervention policies, greatly changed human mobility patterns, especially cross-border mobility (CBM). This study investigates the impact of the first wave of the pandemic and related mobility intervention policies on the CBM of the senior population between Shenzhen and Hong Kong. Based on anonymous mobile phone trajectory data from 17 million devices active in Shenzhen spanning December 2019 to May 2020, we consider the implementation of mobility intervention policies during different stages of pandemic in both cities. We adopt interrupted time series (ITS) analysis to explore the causal effects of different mobility intervention policies on the CBM of older people between Hong Kong and Shenzhen. We find that most mobility intervention policies have a significant abrupt or gradual effect on the CBM of older people, especially in the 60-64 age group. As these policies neglect the mobility needs and characteristics among the senior groups, such as visiting relatives or friends and seeking medical treatment across borders, we suggest that more coordinated and integrated policies and measures are required to address the CBM needs of older people in Shenzhen and Hong Kong, especially in the post-pandemic era.


Assuntos
COVID-19 , Telefone Celular , Humanos , Idoso , Hong Kong/epidemiologia , COVID-19/epidemiologia , Surtos de Doenças , Pandemias
17.
Sci Rep ; 13(1): 21574, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062081

RESUMO

Lower limb ischemia-reperfusion is a common pathological process during clinical surgery. Because lower limb ischemia-reperfusion usually aggravates ischemia-induced skeletal muscle tissue injury after lower limb ischemia-reperfusion, it also causes remote organ heart, intestine, liver, lung and other injuries, and there is no effective clinical treatment for lower limb ischemia-reperfusion injury, so it is urgent to study its injury mechanism. In this study, the rat model of lower limb ischemia-reperfusion was established by clamping the femoral artery with microarterial clips, and the wall destruction such as intimal injury, cell edema, collagen degeneration, neutrophil infiltration, and elastic fiberboard injury of the femoral artery wall was detected. The expression of inflammatory factors was detected by immunohistochemistry. miR-206 preconditioning was used to observe the expression of inflammatory factors, redox status and apoptosis in the vascular wall of rats after acute limb ischemia-reperfusion. Our findings suggest that vascular endothelial cell edema increases, wall thickening, neutrophil infiltration, and elastic fiber layer damage during IRI. Inflammatory factor expression was increased in femoral artery tissue, and miR-206 expression levels were significantly down-regulated. Further studies have found that miR-206 attenuates lower limb IRI by regulating the effects of phase inflammatory factors. In this study, we investigated the effect of miR-206 on inflammatory factors and its possible role in the development of lower limb IRI, providing new research ideas for the regulatory mechanism of lower limb IRI, and providing a certain theoretical basis for the treatment of lower limb ischemia-reperfusion injury after surgery or endovascular intervention.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Ratos , Animais , Isquemia , Traumatismo por Reperfusão/metabolismo , Extremidade Inferior/patologia , MicroRNAs/genética , MicroRNAs/uso terapêutico , Edema , Modelos Animais de Doenças
18.
Nanoscale ; 16(1): 97-109, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38087978

RESUMO

Drug resistance has become an obstacle to successful cancer chemotherapies, with therapeutic agents effectively traversing the blood-brain barrier (BBB) remaining a great challenge. A microenvironment responsive and active targeting nanoparticle was constructed to enhance the penetration of drugs, leading to improved therapeutic effects. Dynamic light scattering demonstrated that the prepared nanoparticle had a uniform size. The cRGD modification renders the nanoparticle with active targeting capabilities to traverse the BBB for chemotherapy. The disulfide-bond-containing nanoparticle can be disintegrated in response to a high concentration of endogenous glutathione (GSH) within the tumor microenvironment (TME) for tumor-specific drug release, resulting in more effective accumulation. Notably, the released fisetin further increased the uptake of doxorubicin by glioma cells and exerted synergistic effects to promote apoptosis, induce cellular G2/M cycle arrest, and inhibit cell proliferation and migration in vitro. Moreover, the nanoparticle showed favorable anti-glioma effects in vivo. Our study provides a new strategy to overcome drug resistance by utilizing a natural product to sensitize conventional chemotherapeutics with well-designed targeted nanodelivery systems for cancer treatment.


Assuntos
Glioma , Nanopartículas , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Linhagem Celular Tumoral , Glioma/metabolismo , Sistemas de Liberação de Medicamentos , Doxorrubicina , Glutationa , Microambiente Tumoral
19.
Clin Transl Oncol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097822

RESUMO

PURPOSE: Amidst the rarity of High-grade transformation (HGT) in adenoid cystic carcinoma (ACC), this study offers unprecedented insights into its aggressive nature and clinical implications. METHODS: A 1:1 match comparison between 23 HGT patients and non-HGT counterparts was extracted from 412 ACC cases, focusing on dissecting distinctive clinicopathological features and prognostic outcomes. RESULTS: The predominant sites of HGT were the sinonasal and lacrimal glands (30.4% each). Notably, the solid subtype was the most prevalent pattern within HGT, accounting for 69.6% of cases. Compared to non-HGT, the HGT cohort exhibited significantly higher rates of lymph node metastasis (39.1% vs. 8.7%; P < 0.05), perineural invasion (60.9% vs. 26.1%; P < 0.05), and increased Ki-67 proliferation index (35.0% vs. 10.0%; P < 0.05). Moreover, HGT regions typically showed reduced or absent p63 expression, along with high-grade pathomorphology. HGT was associated with increased recurrence (55.0%) and distant metastasis (78.3%), leading to an average survival of 35.9 months and a 3-years mortality rate of 35.0%. Overall and progression-free survival rates were significantly decreased in the HGT group. CONCLUSION: This study represents the largest single-center cohort of HGT cases to our knowledge, highlighting its frequent occurrence in the sinonasal and lacrimal glands and association with poorer outcomes. The findings support classifying HGT in ACC as Grade 4, reflecting its severity.

20.
Photodiagnosis Photodyn Ther ; 44: 103854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858910

RESUMO

PURPOSE: The objective of this study was to investigate the influence of photodynamic therapy (PDT) employing different, lower 5-aminolevulinic acid (ALA) dosages on the proliferative activity of Cutibacterium acnes (C. acnes). METHODS: In this in vitro bacterial experiment, we examined the effects of PDT using different doses of ALA (0.05 mmol/L; 0.1 mmol/L; 0.5 mmol/L; 1.0 mmol/L; 2.5 mmol/L). To elucidate the underlying mechanisms, we assessed colony-forming units (CFUs), bacterial staining for live/dead, antioxidant enzyme activity, and gene expression of oxidative stress markers following treatment with different doses of ALA-PDT. RESULTS: Our findings demonstrate that CFU, bacterial staining for live/dead, as well as the activity and gene expression of superoxide dismutase (SOD) and catalase (CAT), all exhibited significant increases when the ALA concentration was 0.1/0.5 mmol/L. However, both CFU and cell growth of C. acnes decreased when the ALA concentration reached 1.0 mmol/L. CONCLUSION: Lower concentration of ALA-PDT (0.1/0.5 mmol/L) appears to promote the growth of C.acnes while higher doses (1.0 /2.5 mmol/L) are associated with eradication. The procedure is possibly mediated by the activation of antioxidant-related genes and enzyme expression in cells.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Antioxidantes/farmacologia , Ácido Aminolevulínico/uso terapêutico , Estresse Oxidativo , Propionibacterium acnes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...